Models
OpenAI CLIP vs. MetaCLIP

OpenAI CLIP vs. MetaCLIP

Both OpenAI CLIP and MetaCLIP are commonly used in computer vision projects. Below, we compare and contrast OpenAI CLIP and MetaCLIP.

Models

icon-model

OpenAI CLIP

CLIP (Contrastive Language-Image Pre-Training) is an impressive multimodal zero-shot image classifier that achieves impressive results in a wide range of domains with no fine-tuning. It applies the recent advancements in large-scale transformers like GPT-3 to the vision arena.
icon-model

MetaCLIP

MetaCLIP is a zero-shot classification and embedding model developed by Meta AI.
Model Type
Classification
--
Classification
--
Model Features
Item 1 Info
Item 2 Info
Architecture
--
CLIP
--
Frameworks
PyTorch
--
--
Annotation Format
Instance Segmentation
Instance Segmentation
GitHub Stars
21.4k+
--
959+
--
License
MIT
--
CC BY-NC 4.0
--
Training Notebook

Compare OpenAI CLIP and MetaCLIP with Autodistill

Using Autodistill, you can compare CLIP and MetaCLIP on your own images in a few lines of code.

First, install the required dependencies:


pip install autodistill autodistill-clip autodistill-metaclip

Then, create a new Python file and add the following code:


from autodistill_metaclip import MetaCLIP
from autodistill_clip import CLIP

from autodistill.detection import CaptionOntology

classes = ["solar panel", "building"]

ontology = CaptionOntology(
    {
        "solar panel": "solar panel",
        "building": "building"
    }
)

metaclip_model = MetaCLIP(ontology=ontology)
clip_model = CLIP(ontology=ontology)

metaclip_results = metaclip_model.predict("./image.png", confidence=0)
clip_results = clip_model.predict("./image.png", confidence=0)

metaclip_classes = [classes[i] for i in metaclip_results.class_id.tolist()]
metaclip_scores = metaclip_results.confidence.tolist()

print("MetaCLIP Classes:", metaclip_classes)
print("MetaCLIP Scores:", metaclip_scores)

clip_classes = [classes[i] for i in clip_results.class_id.tolist()]
clip_scores = clip_results.confidence.tolist()

print("CLIP Classes:", clip_classes)
print("CLIP Scores:", clip_scores)

When you run the file, you will see an output that shows the results from the comparison:


MetaCLIP Classes: ['solar panel', 'building']
MetaCLIP Scores: [0.6350001096725464, 0.3649998903274536]
CLIP Classes: ['solar panel']
CLIP Scores: [0.6350001096725464]

Compare OpenAI CLIP vs. MetaCLIP

Provide your own image below to test YOLOv8 and YOLOv9 model checkpoints trained on the Microsoft COCO dataset.

COCO can detect 80 common objects, including cats, cell phones, and cars.