COCO JSON
to
YOLOv5 PyTorch TXT
In June 2020, Glenn Jocher released a followup to his popular YOLOv3 PyTorch Ultralytics repository and dubbed it YOLOv5. The model uses an annotation format similar to YOLO Darknet TXT but with the addition of a YAML file containing model configuration and class values.
If you're looking to train YOLOv5, Roboflow is the easiest way to get your annotations in this format. We can seamlessly convert 30+ different object detection annotation formats to YOLOv5 TXT and we automatically generate your YAML config file for you. Plus we offer many public datasets already pre-converted for this format.
1 0.617 0.3594420600858369 0.114 0.17381974248927037
1 0.094 0.38626609442060084 0.156 0.23605150214592274
1 0.295 0.3959227467811159 0.13 0.19527896995708155
1 0.785 0.398068669527897 0.07 0.14377682403433475
1 0.886 0.40879828326180256 0.124 0.18240343347639484
1 0.723 0.398068669527897 0.102 0.1609442060085837
1 0.541 0.35085836909871243 0.094 0.16952789699570817
1 0.428 0.4334763948497854 0.068 0.1072961373390558
1 0.375 0.40236051502145925 0.054 0.1351931330472103
1 0.976 0.3927038626609442 0.044 0.17167381974248927
train: ../train/images
val: ../valid/images
nc: 3
names: ['head', 'helmet', 'person']