YOLOv7 was released in July 2022 by WongKinYiu and AlexeyAB. It achieves state of the art performance on and are trained to detect the generic 80 classes in the MS COCO dataset for real-time object detection.
There are six versions of the model ranging from the namesake YOLOv7 (fastest, smallest, and least accurate) to the beefy YOLOv7-E6E (slowest, largest, and most accurate).
The differences between the different sizes of the model are:
The evaluation of YOLOv7 models show that they infer faster (x-axis) and with greater accuracy (y-axis) than comparable realtime object detection models. YOLOv7 evaluates in the upper left - faster and more accurate than its peer networks.
YOLOv7
is licensed under a
GPL-3.0
license.
Explore alternatives to
YOLOv7
.
Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
---|---|---|---|---|---|---|
YOLOv7 | 640 | 51.4% | 69.7% | 55.9% | 161 fps | 2.8 ms |
YOLOv7-X | 640 | 53.1% | 71.2% | 57.8% | 114 fps | 4.3 ms |
YOLOv7-W6 | 1280 | 54.9% | 72.6% | 60.1% | 84 fps | 7.6 ms |
YOLOv7-E6 | 1280 | 56.0% | 73.5% | 61.2% | 56 fps | 12.3 ms |
YOLOv7-D6 | 1280 | 56.6% | 74.0% | 61.8% | 44 fps | 15.0 ms |
YOLOv7-E6E | 1280 | 56.8% | 74.4% | 62.1% | 36 fps | 18.7 ms |
You can use Roboflow Inference to deploy a
YOLOv7
API on your hardware. You can deploy the model on CPU (i.e. Raspberry Pi, AI PCs) and GPU devices (i.e. NVIDIA Jetson, NVIDIA T4).
Below are instructions on how to deploy your own model API.
You can run fine-tuned YOLOv7 object detection models with Inference.
First, install Inference:
pip install inference
Retrieve your Roboflow API key and save it in an environment variable called ROBOFLOW_API_KEY
:
export ROBOFLOW_API_KEY="your-api-key"
To use your model, run the following code:
import inference
model = inference.load_roboflow_model("model-name/version")
results = model.infer(image="YOUR_IMAGE.jpg")
Above, replace:
YOUR_IMAGE.jpg
with the path to your image.model_id/version
with the YOLOv8 model ID and version you want to use. Learn how to retrieve your model and version ID