The tiny and fast version of YOLOv4 - good for training and deployment on limited compute resources, and getting a feel for your dataset
Here is an overview of the
model:
YOLOv4-tiny is the compressed version of YOLOv4 designed to train on machines that have less computing power. Its model weights are around 16 megabytes large, allowing it to train on 350 images in 1 hour when using a Tesla P100 GPU. YOLOv4-tiny has an inference speed of 3 ms on the Tesla P100, making it one of the fastest object detection models to exist.
YOLOv4-Tiny utilizes a couple of different changes from the original YOLOv4 network to help it achieve these fast speeds. First and foremost, The number of convolutional layers in the CSP backbone are compressed with a total of 29 pretrained convolutional layers. Additionally, the number of YOLO layers has been reduced to two instead of three and there are fewer anchor boxes for prediction.
YOLOv4-Tiny has comparatively competitive results with YOLOv4 given the size reduction. It achieves 40 mAP @.5 on the MS COCO dataset.
Training YOLOv4-tiny on Custom Data for Lightning Fast Object Detection: https://blog.roboflow.com/train-yolov4-tiny-on-custom-data-lighting-fast-detection/
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
Roboflow offers a range of SDKs with which you can deploy your model to production.
YOLOv4 Tiny
uses the
uses the
YOLO Darknet TXT
annotation format. If your annotation is in a different format, you can use Roboflow's annotation conversion tools to get your data into the right format.
You can automatically label a dataset using
YOLOv4 Tiny
with help from Autodistill, an open source package for training computer vision models. You can label a folder of images automatically with only a few lines of code. Below, see our tutorials that demonstrate how to use
YOLOv4 Tiny
to train a computer vision model.
Curious about how this model compares to others? Check out our model comparisons.
Join 100k developers curating high quality datasets and deploying better models with Roboflow.
Get started