YOLOv4 has emerged as the best real time object detection model. YOLOv4 carries forward many of the research contributions of the YOLO family of models along with new modeling and data augmentation techniques. This implementation is in PyTorch.
Here is an overview of the
model:
YOLOv4 is a real-time object detection model that was published in the April of 2020. It achieved state-of-the-art performance on the COCO dataset for object detection. By using YOLOv4, you are implementing many of the past research contributions in the YOLO family along with a series of new contributions unique to YOLOv4 including new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss. In short, with YOLOv4, you're using a better object detection network architecture and new data augmentation techniques.
YOLOv4 breaks the object detection task into two pieces, regression to identify object positioning via bounding boxes and classification to determine the object's class. This is similar to the procedure that was used for YOLOv3 (shown below).
Image courtesy of Ethan Yanjia Li
YOLOv4 performs exceptionally well with both faster speeds and higher mAP than its predecessor, YOLOv3.
How to Train YOLOv4 on a Custom Dataset: https://blog.roboflow.com/training-yolov4-on-a-custom-dataset/
Breaking Down YOLOv4: https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv8 is here, setting a new standard for performance in object detection and image segmentation tasks. Roboflow has developed a library of resources to help you get started with YOLOv8, covering guides on how to train YOLOv8, how the model stacks up against v5 and v7, and more.
YOLOv4 PyTorch
uses the
YOLOv4 PyTorch TXT
annotation format. If your annotation is in a different format, you can use Roboflow's annotation conversion tools to get your data into the right format.
Curious about how YOLOv5 compares to other models? Check out our model comparisons.
Join 100k developers curating high quality datasets and deploying better models with Roboflow.
Get started