A common task in working with computer vision models is visualizing model predictions. Being able to qualitatively visualize predictions is useful in in model development, testing, and work to prepare a model for production.
Using the supervision Python package, you can plot and visualize
DeepSparse Object Detection
predictions in a few lines of code. In this guide, we will show how to plot and visualize model predictions.
We will:
1. Install supervision
2. Load data
3. Plot predictions with a supervision Annotator
Without further ado, let's get started!
First, install the supervision pip package:
pip install supervision
Once you have installed supervision, you are ready to load your data and start writing logic to filter detections.
First, we are going to load our dataset into a supervision.DetectionDataset() object. This object will contain information about all the images in a dataset. You can load datasets from many different model types, from YOLO to MMDetection. For this guide, we will use the
DeepSparse Object Detection
data loader.
You can load data using the following code:
import supervision as sv
detections = sv.Detections.from_deepsparse(...)
box_annotator = sv.BoundingBoxAnnotator()
labels = [
f"{classes[class_id]} {confidence:0.2f}"
for _, _, confidence, class_id, _
in detections
]
Replace the ... with the response object from your model.
Supervision has two annotators that let you visualize detections from a computer vision model:
1. BoxAnnotator, to plot bounding boxes.
2. MaskAnnotator, to plot segmentation masks.
You can use the following code to plot bounding boxes:
annotated_frame = box_annotator.annotate(
scene=image.copy(),
detections=detections,
labels=labels
)
sv.plot_image(image=annotated_frame, size=(16, 16))
To plot segmentation masks, replace BoundingBoxAnnotator() with MaskAnnotator(). This will use the segmentation mask annotator for visualizing detections.
supervision provides an extensive range of functionalities for working with computer vision models. With supervision, you can:
1. Process and filter detections and segmentation masks from a range of popular models (YOLOv5, Ultralytics YOLOv8, MMDetection, and more).
2. Process and filter classifications.
3. Compute confusion matrices.
And more! To learn about the full range of functionality in supervision, check out the supervision documentation.
Below, you can find our guides on how to plot detections for other computer vision models.